Increasing value and reducing waste in clinical research

Rustam Al-Shahi Salman
professor of clinical neurology
& honorary consultant neurologist

www.RUSH.ed.ac.uk @BleedingStroke …/bleedingstroke
My disclosures

Salary

Research grants

Editorial boards

Endorsements

www.whopaysthisdoctor.org
Are you wasting away?

Significosis

an inordinate focus on statistically significant results

Neophilia

an excessive appreciation for novelty

Theorrhoea

a mania for new theory

Arigorium

a deficiency of rigor in theoretical and empirical work

Disjunctivitis

a proclivity to produce large quantities of redundant, trivial, and incoherent works

The Leadership Quarterly 2017;28:5-21 (John Antonakis, Lausanne)
Life sciences research in 2010: US$ 240,000,000,000,000

85% wasted

The REduce research Waste And Reward Diligence (REWARD) Alliance...

2009
2 meetings

2013
42

2015
236

2016

Lancet Neurology 2017;16:399-408
How does waste arise?

Are research decisions based on questions relevant to users of research?

Appropriate research design, methods, and analysis?

Efficient research regulation and management?

Fully accessible research information?

Unbiased and usable research reports?

Research waste

REWARD
REduce research Waste
And Reward Diligence
Are research decisions based on questions relevant to users of research?

Appropriate research design, methods, and analysis?

Efficient research regulation and management?

Fully accessible research information?

Unbiased and usable research reports?

17 recommendations, and how to monitor progress

Research waste

17 recommendations, and how to monitor progress
Dear Dr. Rustam Al-Shahi Salman,

Greetings for the day!

We have been through your articles and we appreciate your commitment in the field of Waste Resources. We think that your knowledge and experience will be beneficial to the people working in the field of Waste Resources.

Thus on behalf of the International Journal of Waste Resources, we wish to invite you to share your view on your research as a short note/mini-paper (please refer to the next issue of our journal). If you have investigated a new and interesting problem, you can share your views / opinion and results, which will certainly enrich the quality of our Journal as well as book in emerging Waste Resources researches.
Stroke: increase value, reduce waste... decrease burden?

- Leading cause of disability in adults
- Second leading cause of death
- Costs ~€64.1 billion in Europe/year
- Burden is projected to increase

Lancet Global Health 2013;1:e259-81
Increasing value and reducing waste in stroke research

Eivind Berge, Rustam Al-Shahi Salman, H Bart van der Worp, Christian Stopf, Peter Sandercock, Nikola Sprigg, Malcolm R Macleod, Peter J Kelly, Paul J Nederkoorn, Gary A Ford, for the European Stroke Organisation Trials Network Committee

Stroke is a major burden to patients and society, and resources spent on stroke research must be used efficiently and produce good value in terms of improvements in human health. However, many instances of poor value from stroke research funding have resulted from the way in which stroke research topics have been chosen and how studies have been designed, conducted, analysed, regulated, managed, disseminated, or reported. A cooperative effort of European stroke researchers aimed to identify sources of inefficiency and waste, recommend approaches to increase value, and highlight examples of best practice in stroke research. Evidence suggests that progress has been made, but there is room for much improvement; researchers, funders, regulators, and other stakeholders in stroke research might consider these recommendations when planning new research.
1. Setting research priorities

- **Curie quadrant**: Pure basic research without consideration of relevance to practical issues.
- **Pasteur quadrant**: Use-inspired basic research to address important practical questions.
- **Waste quadrant**: Pure applied research to address important practical questions.
- **Doll quadrant**: Pure basic research to address important practical questions.

Lancet 2014;383:156–65
1. Setting research priorities

• James Lind (1716-1794)
• Tackling treatment uncertainties together
• Finding out what research is important to:
 – Patients
 – Carers
 – Clinicians / healthcare professionals
1. Setting research priorities

- Priority Setting Partnerships
- Gather uncertainties
- Check existing evidence
- Interim prioritisation
 - relevant individuals and stakeholder groups
 - identify the priorities
- Final consensus meeting to reach agreement on the top ten research priorities

www.jla.nihr.ac.uk
1. Setting research priorities: whose?

![Bar chart showing research priorities]

- **James Lind Alliance patient-clinician Priority Setting Partnerships**
 - Education and training, service delivery, psychological interventions, physical interventions, exercise, complementary interventions, diet, and other: 74
 - Radiotherapy, surgery and perioperative interventions, devices, and diagnostic interventions: 29
 - Drugs, vaccines, and biologicals: 23

- **Registered non-commercial trials**
 - Education and training, service delivery, psychological interventions, physical interventions, exercise, complementary interventions, diet, and other: 307
 - Radiotherapy, surgery and perioperative interventions, devices, and diagnostic interventions: 332
 - Drugs, vaccines, and biologicals: 397

- **Registered commercial trials**
 - Education and training, service delivery, psychological interventions, physical interventions, exercise, complementary interventions, diet, and other: 20
 - Radiotherapy, surgery and perioperative interventions, devices, and diagnostic interventions: 89
 - Drugs, vaccines, and biologicals: 689

Lancet 2014;383:156–65
1. Recommendations

- Research on research: factors associated with successful replication of basic research and translation to application in health care, and most productive ratio of basic to applied research
- Research funders should make information available about how they decide what research to support
- Research funders and regulators should fund, and ensure that proposals for additional primary research are justified by, systematic reviews
- Research funders and research regulators should strengthen sources of information about research in progress, insist on publication of protocols at study inception, and encourage collaboration

Lancet 2014;383:156–65
1. Does an up-to-date systematic review confirm the stroke priority?

- Cumulative meta-analysis of acute stroke unit RCTs
- Meta-analysis published 1993

Acute stroke unit better (death/dependence)
1. Does an up-to-date systematic review confirm the stroke priority?

- Guidelines, systematic reviews and RCTs
- Ongoing research
- Priorities for future research
- 25,472 references to 9,764 RCTs and 1,379 systematic reviews

www.askdoris.org
Priorities for research into cavernoma
Final Report of the James Lind Alliance Cavernoma Priority Setting Partnership

Written by David White with Rustam Al-Shahi Salman, Simon Temple and Ian Stuart on behalf of the Cavernoma PSP

www.cavernoma.org.uk/pssp
April 2016

The PSP’s top 10 cavernoma uncertainties

1. Does treatment (with neurosurgery or stereotactic radiosurgery) or no treatment improve outcome for people diagnosed with brain or spine cavernoma?
2. How do brain or spine cavernomas start and develop?
3. What is the risk of brain/spine cavernomas bleeding for the first and subsequent times?
4. Could drugs targeted at cavernomas improve outcome for people with brain or spine cavernomas compared to no drug treatment?
5. What mechanisms trigger bleeding or epileptic seizures in people with brain or spine cavernomas?
6. Are any features of brain or spine cavernoma on imaging associated with a higher or lower risk of bleeding?
7. Does the use of anticoagulant drugs increase the risk of bleeding from brain or spine cavernoma?
8. Does regular monitoring of brain or spine cavernoma improve outcome compared to no monitoring?
9. What features of brain cavernoma lead to the development of epilepsy, or influence the severity of existing epilepsy?
10. Do any specific activities undertaken by people with brain or spine cavernomas provoke bleeds or other symptoms?
2. Design, conduct and analysis

“To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of.”

Sir Ronald Fisher (1890–1962)

Lancet 2014;383:166–75
2. Design, conduct and analysis

Incongruent statistical findings in publications in 2001 (rounding, transcription, or type-setting errors)

- Nature: 62% (38% incongruent)
- BMJ: 75% (25% incongruent)
2. Recommendations

• Make **publicly available** the full protocols, analysis plans or sequence of analytical choices, and raw data

• Maximise the effect-to-bias ratio in research through **high standards of design and conduct**, methodologists, and training

• Reward **reproducibility** practices and reproducible research, and enable an efficient culture for replication of research
2. Design, conduct and analysis

Statistical Analysis of the Primary Outcome in Acute Stroke Trials

Philip M.W. Bath, FRCP, FESO; Kennedy R. Lees, FRCP, FESO; Peter D. Schellinger, MD, FESO; Hernan Altman, BSc, MBA; Martin Bland, PhD; Cheryl Hogg, MSc; George Howard, PhD; Jeffrey L. Saver, MD, FAHA; on behalf of the European Stroke Organisation Outcomes Working Group†

Abstract—Common outcome scales in acute stroke trials are ordered categorical or pseudocontinuous in structure but most have been analyzed as binary measures. The use of fixed dichotomous analysis of ordered categorical outcomes after stroke (such as the modified Rankin Scale) is rarely the most statistically efficient approach and usually requires a larger sample size to demonstrate efficacy than other approaches. Preferred statistical approaches include sliding dichotomous, ordinal, or continuous analyses. Because there is no best approach that will work for all acute stroke trials, it is vital that studies are designed with a full understanding of the type of patients to be enrolled (in particular their case mix, which will be critically dependent on their age and severity), the potential mechanism by which the intervention works (ie, will it tend to move all patients somewhat, or some patients a lot, and is a common hazard present), a realistic assessment of the likely effect size, and therefore the necessary sample size, and an understanding of what the intervention will cost if implemented in clinical practice. If these approaches are followed, then the risk of missing useful treatment effects for acute stroke will diminish. (Stroke. 2012;43:1171-1178.)
3. Regulation and management

“...the clinician who is convinced that a certain treatment works will almost never find an ethicist in his path, whereas his colleague who wonders and doubts and wants to learn will stumble over piles of them.”

Richard Smithells (1924-2002)
3. Regulation and management

Is regulation proportionate, when the (large) majority of the public approves?

<table>
<thead>
<tr>
<th>UK National Cancer Registry</th>
<th>Finland national biobank of existing diagnostic and research samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>72%</td>
<td>77%</td>
</tr>
<tr>
<td>28%</td>
<td>23%</td>
</tr>
</tbody>
</table>

UK National Cancer Registry including postcode, name and address, and sending a letter inviting them to a research study

Finland national biobank of existing diagnostic and research samples

Lancet 2014;383:176–85
3. Regulation and management

RCTs recruited pre-specified sample size

- **31%**
- **69%**

114 RCTs funded by MRC or HTA in the UK in 1994-2003

- **55%**
- **45%**

73 RCTs funded by MRC or HTA in the UK in 2002-2008

Lancet 2014;383:176–85
3. Regulation and management

Methods to improve RCT recruitment

• Systematic review
• 45 studies within a trial (SWATs)
• 43,000 participants
• 46 interventions!

Effective strategies:

1. Telephone reminders to non-respondents (RR 1.7, 95%CI 1.0-2.5)
2. Opt-out contact (RR 1.4, 95%CI 1.1-1.8)
3. Open trial design (RR 1.2, 95%CI 1.1-1.4)

BMJ Open 2013;3:e002360
3. Regulation and management

Methods to improve RCT retention

- Systematic review
- 38 SWATs
- 24,304 participants

Effective strategies for MCQ response:

1. Monetary incentive (RR 1.2, 95%CI 1.1-1.3)
2. Recorded delivery (RR 2.1, 95%CI 1.1-3.9)
3. Open trial design (RR 1.4, 95%CI 1.2-1.6)
3. Recommendations

• Regulators should facilitate reduction of other causes of waste and inefficiency

• Streamline, harmonise and make proportionate the laws, regulations, guidelines, and processes that govern whether and how research can be done

• Increase the efficiency of recruitment, retention, data monitoring, and data sharing in research, and do additional research to learn how efficiency can be increased

• Improve the efficiency of clinical research by promoting integration of research in everyday clinical practice
3. Regulation and management

Regulatory enforcement

- All randomised trials should be registered
- Proportionate approaches to:
 - application
 - patient information leaflets
3. Regulation and management

Better recruitment after UK clinical research networks

![Bar chart showing recruitment numbers over years.](Lancet 2014;383:176–85)
3. Regulation and management

Integration of research in everyday clinical practice

- Oral Anticoagulant Therapy in Acute Ischaemic Stroke With Atrial Fibrillation
 - Start <4 days vs. start 5-10 days after stroke onset
- Registry-based RCT in the Swedish Stroke Register

NCT02961348 www.riksstroke.org
3. Regulation and management

Clinical register e.g. The Swedish Stroke Register

Data entered
- Web interface
- Patient reported outcomes
- Electronic health records

Data from
- Clinical trials
- Other registers

Research data base

- Publications
- Decision support tools
- Reports to health care professionals and other stakeholders

NCT02961348 www.riksstroke.org
3. Regulation and management

Recruitment to prevention RCTs after stroke

Promoting Recruitment using Information Management Efficiently (PRIME): study protocol of a randomised REstart or STop Antithrombotics Randomised Trial (RESTART)

Promoting Recruitment using Information Management Efficiently (PRIME): statistical analysis plan for a stepped wedge cluster randomised trial within the REstart or STop Antithrombotics Randomised Trial (RESTART)

4. Accessible reporting

~50% of registered RCTs are reported

- Country:
 - USA or Canada and other: 47%
 - Not USA or Canada: 45%
 - USA or Canada: 44%

- Sample size:
 - ≥160: 46%
 - <160: 43%

- Study phase:
 - 4: 52%
 - 2/3 or 3: 49%
 - 1/2 or 2: 36%

- Funder:
 - Non-government, non-industry: 56%
 - Government: 47%
 - Industry: 40%

All trials: 46%

Lancet 2014;383:257–66
4. Recommendations

• Performance metrics that recognise full dissemination of research and reuse of original datasets by others
• Develop and adopt standards for the content of study protocols and full study reports, and for data sharing
• Endorse and enforce study registration policies, wide availability of full study information, and sharing of participant-level data
4. Accessible reporting

Stroke RCT IPD repository: VISTA

www.vista.gla.ac.uk
4. Accessible reporting

The International Stroke Trial database
Peter AG Sanderscock1, Maciej Niewada2, Anna Czlonkowska2,3 and for the International Stroke Trial Collaborative Group

Abstract
Background: We aimed to make individual patient data from the International Stroke Trial (IST), one of the largest randomised trials ever conducted in acute stroke, available for public use, to facilitate the planning of future trials and to permit additional secondary analyses.
Methods: For each randomised patient, we have extracted data on the variables assessed at randomisation, at the early outcome point (14-days after randomisation or prior discharge) and at 6-months and provide them as an analysable database.
Results: The IST dataset includes data on 19,485 patients with acute stroke, with 99% complete follow-up. Over 25.4% patients were aged over 80 years at study entry. Background stroke care was limited and none of the patients received thrombolytic therapy.
Conclusions: The IST dataset provides a source of primary data which could be used for planning further trials, for sample size calculations and for novel secondary analyses. Given the age distribution and nature of the background treatment given, the data may be of value in planning trials in older patients and in resource-poor settings.

Trials 2011;12:101
5. Complete & usable reporting

Study conduct and analysis
- Study registration
- Protocol and analysis plan (and revisions)
- Study materials
- Reports to regulators
- Interim and final study reports
- Statistical analyses and summary
- Primary data

Publication and dissemination
- Conference reports and presentation
- Title, abstract with or without lay summary
- Primary report
- Reviewer and editor comments

After publication
- Editorials, media reports, etc.
- Systematic reviews and syntheses
- Corrections and updates
- Secondary reports

REWARD
REduce research Waste And Reward Diligence

Lancet 2014;383:267–76
5. Recommendations

• Funders and research institutions must shift research regulations and rewards to align with better and more complete reporting.

• Research funders should take responsibility for reporting infrastructure that supports good reporting and archiving.

• Funders, institutions, and publishers should improve the capability and capacity of authors and reviewers in high-quality and complete reporting.

Lancet 2014;383:267–76
5. Complete & usable reporting

Reporting guidelines

www.equator-network.org
5. Complete & usable reporting

The Lancet’s Research in Context panel

Panel: Research in context

Evidence before this study
This section should include a description of all the evidence that the authors considered before undertaking this study. Authors should state: the sources (databases, journal or book reference lists, etc) searched; the criteria used to include or exclude studies (including the exact start and end dates of the search), which should not be limited to English language publications; the search terms used; the quality (risk of bias) of that evidence; and the pooled estimate derived from meta-analysis of the evidence, if appropriate.

Added value of this study
Authors should describe here how their findings add value to the existing evidence (including an updated meta-analysis, if appropriate).

Implications of all the available evidence
Authors should state the implications for practice or policy and future research of their study combined with existing evidence.
5. Complete & usable reporting

Reporting guidelines

• 28 rehabilitation and disability journals joined together in a collaborative initiative to enhance research reporting standards through adoption of reporting guidelines
5. Complete & usable reporting

TIDieR checklist

TIDieR

Template for Intervention Description and Replication

FAST INDICATE

BMJ 2014;348:g1687
Who are the key change agents? Funders and regulators...

www.nets.nihr.ac.uk/about/adding-value-in-research
What can you do?
Endorse the REWARD statement

“We recognise that, while we strive for excellence in research, there is much that needs to be done to reduce waste and increase the value of our contributions. We maximise our research potential when:
• we set the right research priorities
• we use robust research design, conduct and analysis
• regulation and management are proportionate to risks
• all information on research methods and findings are accessible
• reports of research are complete and usable

We believe we have a responsibility not just to seek to advance knowledge, but also to advance the practice of research itself. This will contribute to improvement in the health and lives of all peoples, everywhere. As funders, regulators, commercial organisations, publishers, editors, researchers, research users and others – we commit to playing our part in increasing value and reducing waste in research.”

via http://rewardalliance.net rewardalliance
What can you do?
Partner *The Lancet’s REWARD campaign!*

- Priorities
- Design, conduct, analysis
- Regulation and management
- Accessibility
- Complete and usable reporting
- Action and recommendations
- Statement

Randy Schekman Peter Higgs

Physiology or Medicine: James E. Rothman, Randy W. Schekman and Thomas C. Südhof
“For their discoveries of machinery regulating vesicle traffic, a major transport system in our cells”

Physics: François Englert and Peter W. Higgs
“For the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles…”
What are the easy wins?

• Reduce research waste
 – Swiss funders/regulators optimise systems
• More ‘research on research’
• More ‘research in research’
• Demonstrate value to patients and public
• Reward diligence…